Contact Bubble Bilayers with Flush Drainage

نویسندگان

  • Masayuki Iwamoto
  • Shigetoshi Oiki
چکیده

Planar lipid bilayers have been used to form stable bilayers into which membrane proteins are reconstituted for measurements of their function under an applied membrane potential. Recently, a lipid bilayer membrane is formed by the apposition of two monolayers that line an oil-electrolyte interface. Here, a bilayer membrane system is developed with picoliter bubbles under mechanically and chemically manipulable conditions. A water bubble lined with a phospholipid monolayer is blown from a glass pipette into an oil phase. Two blowing pipettes are manipulated, and bubbles (each with a diameter of ~ 50 μm) are held side by side to form a bilayer, which is termed a contact bubble bilayer. With the electrode implemented in the blowing pipette, currents through the bilayer are readily measured. The intra-bubble pressure is varied with the pressure-controller, leading to various sizes of the bubble and the membrane area. A rapid solution exchange system is developed by introducing additional pressure-driven injection pipettes, and the blowing pipette works as a drain. The solution is exchanged within 20 ms. Also, an asymmetric membrane with different lipid composition of each leaflet is readily formed. Example applications of this versatile method are presented to characterize the function of ion channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Bubble/Droplet Morphology and Slippage on Attachment Induction Time in Deoiling Flotation Process

A modified model has been analytically developed to describe the induction time of an elliptic air bubble in contact with an elliptic hydrophobic oil droplet. The role of hydrophobicity was revealed in the slippage of liquid over the surfaces of bubble and droplet. In this condition, the analytical relationships for pressure distribution and consequently hydrodynamic resistance force through th...

متن کامل

An Insight into Colloidal Gas Aphron Drainage Using Electrical Conductivity Measurement

In the present  paper Electrical Conductivity (EC) of Colloidal Gas Aphron (CGA) suspensions was measured for anionic and cationic surfactants (Sodium Dodecyl Sulfate (SDS) and Tetradecyl Trimethyl Ammonium Bromide (TTAB)). Experiments were made for different concentrations of SDS (6, 8.1, 10 mM) and TTAB (2, 3.51, 5 mM). CGA drainage behavior was observed and measured using 1 liter measuri...

متن کامل

Bubble-surface interactions with graphite in the presence of adsorbed carboxymethylcellulose.

The adsorption of carboxymethylcellulose (CMC), and the subsequent effect on bubble-surface interactions, has been studied for a graphite surface. CMC adsorbs on highly oriented pyrolytic graphite (HOPG) in specific patterns: when adsorbed from a solution of low concentration it forms stretched, isolated and sparsely distributed chains, while upon adsorption from a solution of higher concentrat...

متن کامل

Using a patterned grating structure to create lipid bilayer platforms insensitive to air bubbles.

Supported lipid bilayers (SLBs) have been used for various biosensing applications. The bilayer structure enables embedded lipid membrane species to maintain their native orientation, and the two-dimensional fluidity is crucial for numerous biomolecular interactions to occur. The platform integrated with a microfluidic device for reagent transport and exchange has great potential to be applied ...

متن کامل

Bubble motion measurements during foam drainage and coarsening.

We have studied bubble motion within a column of foam allowed to undergo free drainage. We have measured bubble motion upward with time and as a function of their initial positions. Depending on the gas used, which sets the coarsening and drainage rates, different bubble upward motion types have been identified (constant speed, acceleration or deceleration) and explained in relation with liquid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015